Glycogen synthase kinase 3β inhibitors induce apoptosis in ovarian cancer cells and inhibit in-vivo tumor growth.
نویسندگان
چکیده
Ovarian cancer is the most lethal gynecological malignancy among US women. Paclitaxel/carboplatin is the current drug therapy used to treat ovarian cancer, but most women develop drug resistance and recurrence of the disease, necessitating alternative strategies for treatment. A possible molecular target for cancer therapy is glycogen synthase kinase 3β (GSK3β), a downstream kinase in the Wnt signaling pathway that is overexpressed in serous ovarian cancer. Novel maleimide-based GSK3β inhibitors (GSK3βi) were synthesized, selected, and tested in vitro using SKOV3 and OVCA432 serous ovarian cancer cell lines. From a panel of 10 inhibitors, GSK3βi 9ING41 was found to be the most effective in vitro. 9ING41 induced apoptosis as indicated by 4',6-diamidino-2-phenylindole-positive nuclear condensation, poly (ADP-ribose) polymerase cleavage, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The mechanism for apoptosis was through caspase-3 cleavage. GSK3βi upregulated phosphorylation of the inhibitory serine residue of GSK3β in OVCA432 and SKOV3 cell lines and also inhibited phosphorylation of the downstream target glycogen synthase. An in-vivo xenograft study using SKOV3 cells demonstrated that tumor progression was hindered by 9ING41 in vivo. The maximum tolerated dose for 9ING41 was greater than 500 mg/kg in rats. Pharmacokinetic analysis showed 9ING41 to have a bioavailability of 4.5% and to be well distributed in tissues. Therefore, GSK3β inhibitors alone or in combination with existing drugs may hinder the growth of serous ovarian cancers.
منابع مشابه
The Potential Role of Glycogen Synthase Kinase-3β in Neuropathy-Induced Apoptosis in Spinal Cord
Introduction: Glycogen Synthase Kinase-3β (GSK-3β) participates in several signaling pathways and plays a crucial role in neurodegenerative diseases, inflammation, and neuropathic pain. The ratio of phosphorylated GSK-3β over total GSK-3β (p-GSK-3β/t-GSK-3β) is reduced following nerve injury. Apoptosis is a hallmark of many neuronal dysfunctions in the context of neuropathic pain. Thus, this st...
متن کاملGlycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells
Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...
متن کاملGlycogen Synthase Kinase-3β, NF-κB Signaling, and Tumorigenesis of Human Osteosarcoma
BACKGROUND Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, may function as a tumor suppressor or an oncogene, depending on the tumor type. We sought to determine the biological function of GSK-3β in osteosarcoma, a rare pediatric cancer for which the identification of new therapeutic targets is urgent. METHODS We used cell viability assays, colony formation assays, an...
متن کاملInhibition of glycogen synthase kinase-3 beta induces apoptosis and mitotic catastrophe by disrupting centrosome regulation in cancer cells
Glycogen synthase kinase-3 beta (GSK-3β) has been investigated as a therapeutic target for numerous human diseases including cancer because of their diverse cellular functions. Although GSK-3β inhibitors have been investigated as anticancer reagents, precise biological mechanisms remain to be determined. In this study, we investigated the anticancer effects of GSK-3β inhibitors on cancer cell l...
متن کاملEfficacy of glycogen synthase kinase-3β targeting against osteosarcoma via activation of β-catenin
Development of innovative more effective therapy is required for refractory osteosarcoma patients. We previously established that glycogen synthase kinase-3β (GSK- 3β) is a therapeutic target in various cancer types. In the present study, we explored the therapeutic efficacy of GSK-3β inhibition against osteosarcoma and the underlying molecular mechanisms in an orthotopic mouse model. Expressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anti-cancer drugs
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2011